Solving Quadratic Equations by Factoring. Examples of Juadratic Equations. $\chi^{2} + 7\chi + 12 = 0$, $\chi^{2} = 25$, $\chi^{2} - 2\chi = 24$ $\chi^{\prime} = 25$ x2=25_ $\chi = \sqrt{25} = 5$ $\chi = \pm \sqrt{25}$ $\chi = \pm 5$ $\chi = -5$ A quadratic equation is any equation that can be written in the form $ax^{2} + bx + c = 0$ where a, b, c are real numbers and $a \neq 0$ $\chi^{2} + 2\chi - 15 = 0$ (x+5)(x-3)=0 Zero product property effer $\chi_{+5} = 0$ or $\chi_{-3} = 0$ -5 -5 +3 +3 $\chi_{=-5} = \chi_{=3}$ $7(^{2} + 2x - 15 = 0)$ $(-5)^{2} + 2(-5) - 15$ $(3)^{2} + 2(3) - 15$ 25-10-15=0 9 + 6 - 15 = 0 $\mathcal{E}_{q}(x-12)(x+1) = -40$ $\chi_{2} - 11\chi - 12 = -40$ +(0)+(0)7(2 - 11x + 28 = 0)

 $(\chi - 4\chi \chi - 7) = 0$ $e^{+} X - 4 = 0 \text{ or } X - 7 = 0$ $\chi = 4 \qquad \chi = 7$ $T_{N}(y-6)(y+1) = -10$ $y_{2} - 5y_{-6} = -10$ + w_{+10} $y^2 - 5y + 4 = 0$ (y - 4)(y - 1) = 0 y = 4, 1 $2x^{2} + 40 = 18x$ OSet = OSolve $2 \times 2 - 18 \times + 40 = 0$ GFactor. 2(7(2-9x+20)=0)2(x-4)(x-5)=03)501ve $\chi = 4, 5$ try Solve $(y)^2 = 4\chi$ $6x^2 - 4x = 0$ 27((3)(-2)=0 $\frac{271-0 \text{ or } 371-2=0}{2}$ $\chi = 0$ X=2 $3\chi^{2} + 5 = 8\chi$ TM $3\chi^2 - 8\chi + 5 = 0$ p = 155 = - 8 (3x-5)(x-1)- ? - ~

376-5=0 37(=5 $\gamma(=5)$ $\gamma(=)$ $4\chi^{2} + 12\chi + 9 = 0$ $(2\chi + 3)(2\chi + 3) = 0$ $\chi = -\frac{3}{7}$ $\sqrt{\frac{2x+1}{2x+1}} + \frac{7}{2} = \frac{2x+120}{2x2-1}$ $\left(\sqrt{\frac{-7}{2x+1}}\right)^2 - \frac{-7}{2x-1} - \frac{2x2-1}{2x-1}$ Solve $2x+1 = \chi^2 - 14\chi + 49$ $\sqrt{2(4)+1} + 7 = 4. \qquad \qquad -2\chi - 1$ $\sqrt{9+7} \qquad \qquad 0 = \chi^2 - 16\chi + 48$ $3+7 = 4 \qquad \qquad 0 = (\chi - 4)(\chi - 12)$ $\chi = \chi(, 12.)$ $\sqrt{2(12)+1} + 7 = 12.$ is extraneous. V = 5 + 7く+ナ=1子. $\gamma c = 1 a$ Pg 209-215 #4-16, 18-20