Solving Integralities Algebraically

Tuesday, January 7, 2020 8:41 AM 3x+2<8 $\frac{3x < 6}{3}$ x < 2 $-2 - 10 \cdot 23$ Interval Notation L when the number was included \leq \sim \geq (when the number wasn't included $\chi < 2 \quad (-\infty, 2)$ $\frac{1}{3}x - 3 \ge 1$ +3 + 3 $3\left(\frac{1}{3}x\right) \ge (4) 3$ 50/ve $\chi = 6 \left(6, \infty \right)$ Wrte the following in interval notation $0-3 \le x \le 5$ [-3,5] closed interval $3 \times 10 \times 24 (-\infty, 1) \times (4 \infty)$ open interval (-00,-1) haff open interval. (-22)

$$(4)$$
 $(-2,3)$

Solve:
$$2x+3 < 3x+9$$

 $-3x-3 - 3x-3$
 $-x < 6$
 $x > -6 (-6, \infty)$

Solve
$$2x^{2} + 7x - 1 \le 3$$

 $2x^{2} + 7x - 4 \le 0$ $p = -8$
 $(2x - 1)(x + 4) \le 0$ $8 = 7$
 $x - 1 + \frac{1}{2}, 0$ $(-4, 0)$ $(-4, 0)$ $(-5, -1)$
 $x - 5 - 1 - 3 - 2 - 1$ $(-5, -1)$ $(-5,$

Test 0:
$$2(0)^{3} + 7(0) - 1 \leq 3$$

 $-1 \leq 3 \vee$
 $7 = 3 \vee$
 $8 \leq 3 \times$

Solution $-4 \leq x \leq \frac{1}{2}$ or $[-4, \frac{1}{2}]$ Find the oc-intercepts (the critical points)

Draw them on a # line. Test a

number between the 2 x-int's in

The inequality. If it makes the


inequality true then that is the

solution. If it makes the inequality

false then the 2 outside sections are

the solution. The solution 50/ve $3x^2 + 6x - 20 < 25$ $3x^2 + 6x - 45 < 0$ $3(x^2 + 2x - 15) < 0$ 3(x+5)(x-3) < 00 3 $Tost 0: 3(0)^{2} + 6(0) - 20 < 25$ -20 < 25 / Solution - 5 < x < 3 or (-5,3) Pg 372-378 #3-13 $2.50 + 1.25r \leq 20.00$

$$10.95 + .65K \leq 150$$

$$\frac{1}{x^{2}+15x+50\leq 0}$$

$$h(t) = -5t^2 + 15t + 2$$
.
 $-5t^2 + 15t + 3 > 5$
 $-5t^2 + 15t - 6 > 0$